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ABSTRACT 

More and more cities adopt the concept of smart cities to 
manage their processes and to satisfy increasingly 
sophisticated demands of their citizens. Unfortunately, due to 
the complexity and lack of effective support by current 
infrastructures, developing smart-city systems is a very 
tedious task. This paper identifies 6 categories of challenges 
as possible obstacles in the cost-effective realization of 
smart-city systems. For each obstacle, a possible research 
approach is suggested. In relation to the realization of smart-
city systems, to the best of our knowledge, this is the first 
paper that presents these obstacles in a single publication. 

INTRODUCTION 

More and more cities adopt the concept of smart cities to 
manage their processes and to satisfy increasingly 
sophisticated demands of their citizens. Unfortunately, due to 
the complexity and lack of effective support by current 
infrastructures, developing smart-city systems is a very 
tedious task. Within this context, this paper discusses the 
software engineering challenges in realizing smart-city 
systems.  

  The concept of smart cities follows the evolutionary 
steps of automation (Ellis & Nutt, 1980). It aims at 
enhancing efficiency and effectiveness; It is first based on 
replacement of the current state by (new) ICT techniques and 
then causes a transformation to something different with 
respect to the past; It is a disruptive development. What is 
“smart” is a moving target and can only be defined relatively. 

We classify smart-city systems as applications and 
infrastructures. Our focus is on infrastructures. 
Infrastructures support the development of applications and 
as such they play a crucial role in the development of 
applications. To increase the effectiveness and efficiency in 
realizing smart-city systems, as a part of the infrastructure, 
effective software engineering models, methods, techniques 
and tools must be provided so that software engineers (smart-
city developers) are conveniently supported in their 
application development activities. The challenges that are 
discussed in this paper are due to the lack of effective 
support by the current infrastructures. 

Infrastructure design refers to many different areas from 
sensor networks to business platforms. Much work has been 
carried out in this context and many useful sub-systems are 
already available for use. A smart-city infrastructure, 
therefore, must be designed as an enabler, integrator and 

harvester of the available technologies individually and 
together and must fill the gaps where it is needed. 

We identify 6 categories of software engineering 
challenges in realizing smart-city systems. These are, (1) 
developing the necessary models for smart-city systems; (2)  
managing and optimizing clusters of systems; (3) designing 
models, methods and tools for critical infrastructures; (4) 
optimizing the necessary quality attributes by system 
adaptation at run-time; (5) integrating software; and (6) 
designing a smart infrastructure with a high degree of 
interoperability, configurability, adaptability and 
evolvability.  

We discuss these challenges in some detail in the 
following sections. The purpose of this paper is to make the 
software engineers be conscious about the problems that they 
may face while developing smart-city systems and to inspire 
researchers in their research activities. For each identified 
challenge, we also present a research approach to address the 
challenge in systematical manner.  

This paper is organized as follows. The next section 
gives definitions and emphasizes the importance of effective 
infrastructures in developing smart-city applications. The 
remaining sections present the challenges and propose 
research approaches to address these. Finally, the last section 
concludes the paper. 

SMART CITIES 

Recently, the concept of smart cities has attracted a lot 
of attention. A smart city is generally defined as “an urban 
area that uses different types of electronic data collection 
sensors to supply information which is used to manage assets 
and resources efficiently” (Wiki-a, 2019). The term smart 
cities, however, may refer to different definitions depending 
on the stakeholders involved (Gil-Garcia, Pardo & Nam, 
2015). For example, viewpoints of stakeholders over smart 
cities who are in charge of managing public services, city 
administration, governance, ecological sustainability, ICT 
systems may differ from each other considerably. In addition, 
residents have also a strong interest in the services offered by 
a smart city.  

There has been a considerable number of research and 
development activities in the world to create smart cities 
(Panos & Pardalos, 2017) (Bibri, 2018). Many cities around 
the globe claimed the status of a smart city (Sanseverino, 
Sanseverino & Vaccaro, 2018) (Smart Cities Council, 2019) 
(EU report, 2007). The topic of smart cities is also 
considered as a very strategic topic by many governments.  



 

  

This paper particularly focuses on the generic 
infrastructure, which is broadly defined as a set of generic 
information technology (IT) components that are the 
foundation of IT services for smart cities. Here the term 
generic refers to reusable components that can be utilized by 
diverse applications. The infrastructure is divided into three 
layers: 

1. Sensor network layer: It involves the design 
and deployment of sensors, communication  
protocols, data gathering and transmission, data 
interpretation, etc. 

2. Architecture layer: It utilizes the services 
offered by the sensor network layer and 
implements the core software system 
architectures so that business platform layer 
applications can be developed. 

3. Business platform layer: It utilizes the services 
offered by the other layers and provides end-
user and/or business solutions to the smart-city 
requirements.  

The functionalities of these layers are not fixed and 
evolve continuously with the advancements in technology 
and changing user demands. 

Smart-city applications can be very diverse.  Companies 
may offer different kinds of smart-city applications for a very 
diverse range of needs. Agility is an important feature for 
companies to develop smart-city applications (just) in time 
according to the changing end-user demands and market 
expectations. Infrastructures must support a large category of 
smart-city applications and be flexible enough to  
conveniently introduce new techniques when they are 
demanded. 

The design of a generic infrastructure refers to a large 
category of publications in many different areas. These are 
for example, sensors and sensor networks (Ferrari, 2010), big 
data (Mohanty & et al., 2015) and machine learning 
(Goodfellow & et al., 2016), self-adaptive systems (Kounev 
& et al., 2017), service-oriented architectures (Dhara, 
Dharmala  & Sharma, (2015), systems of systems (DoD, 
2008), cloud computing (Marinescu, 2017), cyber-physical 
systems (Suh & et al., 2014), cyber-security (Lehto & 
Neittaanmäki, 2015), critical infrastructures (Gritzalis, 
Theocharodou & Stergiopoulus, 2019), reliable systems 
(Birolini, 2017), dependable systems (de Lemos, Gacek & 
Romanovsky, 2003), business platforms such as decision 
support systems, business process modeling (Shishkov, 
2018), and a large set of software engineering literature on 
programing languages, software architectures, model-driven 
architectures, testing, verification etc. (Sommerville, 2016) 
(van der Linden & et al., 2007)(Da Silva, 2015)(Nielsen, 
2014). Many useful systems with different capabilities are 
already available for use. The infrastructure therefore, must 
be designed as an enabler, integrator and harvester of the 
available technologies individually and together and must fill 
the gaps where it is needed. 

Economical, sustainable and robust software systems 
which fulfil functional and qualitative requirements are 

essential for all software systems (Akşit, 2018). Achieving 
these generic objectives are considered as the main objective 
of the Software Engineering discipline (Sommerville, 2016). 
To fulfill the requirements of smart-city applications now 
and in the future, software engineering models, methods, 
techniques and tools are crucial. No matter how intelligent a 
software solution is, if it cannot be realized with the desired 
quality attributes, one cannot expect an economical value out 
of it (Akşit, 2018). The software engineering challenges 
presented in this paper, therefore, form an important obstacle 
in cost-effective realization of smart-city applications. 

In addition to offering diverse platform services, 
infrastructures must also provide effective software 
engineering methods and techniques so that software 
engineers (smart-city developers) are conveniently supported 
in their application development activities. 

LIMITATIONS OF THE STATE-OF-THE-ART 
TECHNIQUES AND APPROACHES TO ADDRESS 
THESE 

Unfortunately, due to the complexity of the systems, the 
necessity of coordinating, integrating and optimizing 
different systems together, dealing with different levels of 
abstractions from sensor networks to business platform 
layers, etc., developing smart-city applications is generally a 
very tedious and time consuming task. Currently a 
considerable number of research activities is being carried 
out within this context (Bibri, 2018). Along this line, after 
carrying out an extensive study on the related literature on 
infrastructures and interviewing the relevant persons, we 
have identified 6 general categories of challenges: 

Challenge 1: Developing models for smart cities 

Many software companies specialize in certain 
application areas. In such cases, it is claimed that deriving 
software architecture and systems from the relevant domain 
models can be very productive (Akşit, 2018) (Da Silva, 
2015). The benefits of using models can be: 

 Models can provide a high-level representation of 
the topic of interest and hide unnecessary details of 
software so that complexity can be managed;  

 Models can enhance reusability and extensibility 
through model reuse and model transformations;  

 Models can help in enforcing correctness through 
model-based verification techniques and testing; 
and  

 Models can ease programming by generating code 
from models. 

Challenges in applying models can be: 
 Reducing the effort that is spent in defining 

models; 
 Determining the abstractness and details of 

models;  
 Checking consistency among models; 
 Assuring the invariant properties of models; 
 Generating efficient code from models. 



 

  

Model-Driven Engineering (MDE) is a well-known 
approach which is based on models, meta-models ( and meta-
meta models, etc.) and model transformations (Brambilla, 
Cabot & Wimmer, 2012). During the last decade, there has 
been an increasing emphasis on MDE and as such many 
useful models are readily available for use.  

Unfortunately, within the context of smart cities many 
useful models are still missing. We think that lack of models 
in designing smart-city applications is one of the causes of 
excessive programming effort needed in realizing smart-city 
applications. 

Recently, a considerable amount of research has been 
carried out in data science, machine learning and decision 
support systems due to the availability of large amount of 
data and new data analysis and machine learning techniques 
(Pyne & et al., 2016) (Kramer, 2016). These techniques can 
be useful in obtaining realistic models by learning/inferring 
the (parts-of) models and/or their parameters. 

We think that to design and implement the necessary 
models, meta models and model transformations the 
following research approach can be followed: 

 Elaborate on smart-city applications and within the 
context of MDE, develop models required by most 
smart-city applications. In particular: 
- Develop models for the sensor networks layer. 

The models should represent sensor networks, 
topologies, data adaptation and interpretation 
modules, characteristics of sensors, etc.; 

- Develop models for the architectural layer. 
Models should represent various architectural 
styles that are required for smart-city 
applications. Important category of models are 
used for dependability purposes (See Challenge 
3); 

- Develop models for the business platform 
layer: Models should represent various needs of 
businesses, such as work-flow modeling, 
scheduling and optimization; 

 Develop models for the integrator language and 
technique (see Challenge 5) which is to be designed 
in the implementation of this proposal. This is 
important to integrate models with each other where 
necessary;  

 Check consistency among the models automatically; 
 Verify the invariants of models in the model 

instantiation phase, where possible; 
 Adopt model query and pruning mechanisms to 

manage the complexity of the model base; 
 Generate efficient code where applicable; 
 Develop data gathering, analysis and machine 

learning techniques to learn/infer the (parts-of) 
models and/or their parameters. 

 Define various realistic use-case scenarios which 
utilize the models defined at various abstraction 
levels, from the sensor network layer to the 
architecture and business platform layers and justify 
the effectiveness of the models defined. 

Accordingly demonstrate the advantages of the 
model-based approach with respect to the 
straightforward programming practices without 
using models.  

The related research question is how to design high-level 
smart-city models, techniques and tools so that the these 
requirements can be fulfilled effectively.  

Challenge 2: Designing a framework for managing and 
optimizing the configurations of clusters 

Smart-city systems typically consists of clusters of 
systems (Obaidat & Nicopolitidis, 2016). Each system 
cluster is assumed to be a (potentially) software-intensive, 
operationally and managerially independent computer system 
interoperating with other systems to achieve the common 
business goals. Clusters may be formed at sensor network, 
architecture and business platform layers. Interoperation may 
occur within and between layers.  Each cluster may also 
incorporate various computational elements such as sensors, 
translators, adaptors, etc. As such, we assume that distributed 
computing is a natural property of clusters. Both the elements 
of a cluster and the clusters of clusters may be required to be 
configured according to the needs. 

To create generic infrastructures, the infrastructure must 
provide means to integrate/operate a variant set of 
applications. Optimizing configuration requires modeling the 
common and variable aspects of the clusters (Coplien, 
Hoffman & Weiss, 1998). Since smart cities have to cope 
with a various set of requirements, the design of 
configuration that satisfies the management and quality 
requirements is not trivial.  

We think that managing and configuring the elements of 
clusters should not be restricted to procedural measures only 
(such as initializing, linking, etc.) but the overall quality of 
configurations must be considered as well. Unfortunately, to 
the best of our knowledge, for system structuring, generic 
MDE frameworks have not been developed so far to manage 
and optimize the elements of clusters or clusters of clusters 
according to the user-defined quality optimization criteria. 
To address this challenge, the following approach is 
proposed: 

 Define models for clusters at sensor network, 
architecture, and business platform layers. Models 
must explicitly represent the common and variable 
aspects of the clusters. 

 Define the necessary (quality-based) management 
operations for the clusters; 

 Define models for various quality attributes 
(timeliness, energy, processing power, precision 
etc.) together with the necessary optimization 
criteria for configuring clusters optimally;  

 Design and implement various optimization 
techniques with different strategies; 

 Adopt different adaptor/generator mechanisms to 
restructure the clusters according to the computed 
optimal configuration scheme at compile time 
and/or at run-time. 



 

  

 Develop data gathering, analysis and machine 
learning techniques to learn/infer the (parts-of) 
models and/or their parameters; 

 Define various realistic management and 
configuration scenarios for the elements of clusters 
and for the clusters of clusters and apply the 
designed techniques accordingly. Measure the 
efficiency and effectiveness of the desired 
techniques with respect to manual and/or non-MDE 
approaches. Verify that the configurations are 
optimal with respect to the desired quality attributes 
and optimization criteria. 

The related research question is how to design a generic 
MDE framework so that managing and optimizing the 
configuration of the elements of clusters and/or the clusters 
of clusters can be realized 

 Challenge 3: Designing models, methods and tools for 
critical infrastructures 

Critical infrastructure for smart cities can be defined as 
“an asset or system which is essential for the maintenance of 
vital societal functions within a city. The damage to a critical 
infrastructure, its destruction or disruption by natural 
disasters, terrorism, criminal activity or malicious behavior, 
may have a significant negative impact for the security of the 
inhabitants of the city” (EU, 2019). It should be noted that 
this term is typically used at the scope of a nation, but 
similarly it applies also to smart cities which will heavily rely 
on the cyber part (software) that controls the city. 

Since in this paper we aim at software intensive 
solutions to the identified smart-city problems, we will 
further exclude measures other than the software measures. 
Within this context, we claim that specially designed 
software systems can effectively support designing critical 
infrastructures by providing architectures with a high degree 
of reliability, availability, security, timeliness and 
correctness. Dependability is the ability of a system to 
deliver service that can justifiably be trusted (Sözer, 2009). 
This definition encompasses several quality attributes 
including reliability, availability, etc. Reliability is defined as 
continuity of correct service, whereas availability is readiness 
for correct service. Computer security or cybersecurity is 
defined as “the protection of computer systems from theft or 
damage to their hardware, software or electronic data, as well 
as from disruption or misdirection of the services they 
provide” (Wiki-b, 2019). Timeliness is defined as the ability 
of a computer/software system to complete its processing 
within the specified time constraints. Correctness is defined 
as the fulfillment of the functional (and qualitative) 
requirements of the system.  

A critical infrastructure may demand all these quality 
attributes  together and as such designing an effective critical 
infrastructure can be a very challenging task. Dependability 
can be provided by (1) prevention, for example by applying 
the right design methods, (2) removal of the faults, for 
example by verification and testing, and (3) by tolerance, for 

example by adopting fault-tolerance architectures. All these 3 
approaches can be meaningful in a certain context.  

We claim that domain-specific architectural styles and 
the associated techniques can help in designing critical 
infrastructures considerably. However, this may require the 
definition of domain-specific architectural styles for each 
quality attribute and integration of these styles together 
within the overall architecture by leveraging the intended 
quality attributes of each style. 

In the literature, various algorithmic techniques and 
search-based methods (Harman & et al., 2012) have been 
introduced to compute the “optimal” architectural 
decomposition with respect to certain quality attributes. 
Although there has been a number of domain-specific 
architectural style proposals (Sözer, Tekinerdogan & Akşit, 
2013), for example to provide a high degree of availability, 
composition of different architectural styles for various 
dependability purposes has not been studied in detail. 
Furthermore, to the best of our knowledge, there are no MDE 
framework proposals to design and integrate various 
architectural styles together for the purpose of supporting 
critical infrastructures and to compute the optimal trade-off 
among these styles based on user-defined criteria. 

To address this challenge, it is considered necessary to 
design and implement various architectural styles for the 
purpose of critical infrastructures within the context of an 
MDE framework. The following approach is proposed for 
this purpose: 

 Adopt an MDE approach to define architectural 
styles for: reliability and availability, security and 
timeliness; 

 Within the MDE framework, define quality models 
for reliability/availability, security and timeliness; 

 Define trade-off relationships among the quality 
attributes;  

 Define models for multi-objective optimization 
criteria; 

 Design and implement multi-objective optimization 
techniques with different strategies; 

 Integrate (risk) analysis tools for the adopted quality 
attributes for example based on model-checking;  

 Develop data gathering, analysis and machine 
learning techniques to learn/infer the (parts-of) 
models and/or their parameters; 

 Define various realistic attack and failure scenarios 
and test the designed architectural styles 
individually and together. Verify the robustness of 
the styles according to the desired quality attributes. 
Check if the trade-off conditions are fulfilled at run-
time. For the risk analysis, it is also possible to 
adapt other verification tools, for example by means 
of run-time verification. These techniques will be 
discussed under Challenge 4. 

The related research question is, within an MDE 
framework, how to define a set of architectural styles for 
assuring certain quality attributes for critical infrastructures 



 

  

and how to compute and optimize the necessary trade-offs 
among these qualities. 

Challenge 4: Optimizing the necessary quality attributes 
through system adaptation at run-time 

Smart-city systems are long-living systems. When a 
system is deployed, it must be adapted, modified, extended 
and (partially) replaced while it is operational. Challenge 4 
deals with the automatic adaptation of smart-city 
infrastructures at run-time.  

There has been a large number of proposals to verify 
systems at run-time (Malakuti, 2011). Most of these systems 
adopt various specification languages and generate run-time 
monitors and verification modules according to the 
specifications defined. Although a considerable number of 
systems are now available for use, there has been only a few 
number of proposals to verify systems across multiple 
languages in distributed system settings (Malakuti, Akşit & 
Bockisch, 2011). As such most existing run-time verification 
systems are less suitable for verifying systems of systems. 

A number of approaches has been presented for 
designing and implementing so-called quality aware 
architectures, for various purposes, for example for reducing 
energy consumption (Malakuti, Lohmann & Akşit, 2015). 
Self-adaptive or self* systems have been defined in the 
literature to create systems with dynamic adaptation (Kounev 
& et al., 2017).  Most of these systems are inspired from the 
adaptive control theory (Kuo, 1995) and as such they adopt 
one or more control loops for adaptation. Recently, within 
the context of MDE approaches, a number of research 
proposals has been presented to design adaptive systems. So-
called models@run-time systems adopt various feedback 
control mechanism to improve the system performance 
according to the predefined control parameters (Bennaceur & 
et al., 2014). However, there is hardly any MDE framework 
available which allows user-defined quality models, monitors 
the systems accordingly at run-time to check if the desired 
quality attributes are satisfied, and optimizes the system 
structure using self-adaptation mechanisms.  

Data analytics, machine learning and decision support 
systems can be particularly useful in steering the control 
process of the adaptation of systems. 

Challenge 4 is to design and implement various models 
for the purpose of defining run-time verification and self-
adaptation systems within a context of an MDE framework. 
To this aim, the following approach is proposed: 

 Define models of specification languages to express 
the desired properties of systems at run-time, for 
example, based on functions, data and/or time. 
Extend these properties according to the desired 
quality attributes if necessary (in alignment with 
Challenge 3); 

 Define generative techniques for run-time monitors 
and verification automata; 

 Minimize the overhead of run-time monitoring, 
where possible; 

 Extend the run-time verification techniques over 
multiple languages and systems, for example by 
incorporating the run-time verification techniques in 
the integrating language, which is discussed by 
Challenge 5. 

 Define models for architectural styles for self-
adaptive systems based on feedback-control 
principles; 

 Integrate self-adaptive architectural styles with the 
run-time verification techniques; 

 Define means to gather the relevant data, and 
develop data analysis techniques. Accordingly, 
define machine learning/deep learning techniques as 
a meta-control mechanism of self-adaptive systems; 

 Investigate multi-objective optimization techniques 
as control strategies; 

 Define an experimental setting where the designed 
systems can be tested with various contextual 
parameters. Adopt statistical generators to adjust the 
contextual parameters at run-time. While varying 
the contextual parameters using realistic scenarios, 
monitor the systems behavior and its adaptation 
capabilities. Justify accordingly the designed 
systems if they satisfy the desired run-time 
requirements. 

The related research question is how to design 
architectural styles for run-time verification and self-
adaptation so that systems can preserve their run-time 
qualities as desired. 

Challenge 5: Integrating software systems 

Integrating software systems can be practically realized 
at system level or at programming-language level. “System 
integration is defined as the process of bringing together the 
component sub-systems into one system and ensuring that 
the subsystems function together as a system” (Wiki-c, 
2019). There are various integration possibilities such as 
horizontal and vertical integration, which roughly correspond 
to communication-channel based integration or layered-
architecture based integration, respectively. Programming-
language level integration is realized at a much finer level of 
language modules. A typical smart-city application may 
require integration of many sub-systems and corresponding 
programming-language modules for the purpose of for 
example, data sensing, gathering and reasoning, run-time 
configuration and tuning, storing data on cloud systems,  
analyzing data, adopting machine learning techniques, 
utilizing decision support systems, business processes and 
work-flow schedulers, etc.  

Many of the functionally specialized sub-systems and 
language modules/libraries may be developed independently. 
Integration is generally carried out using techniques like, 
IDL’s and stub-generators, adaptors, proxies, scripting 
languages, glue-code, brokers, virtual machines, dedicated 
libraries, internet protocols, web-services, service-oriented 
architectures, etc. Although these techniques help 
considerably, they may still require a considerable 



 

  

programming effort and in-depth knowledge about the 
systems/modules being integrated. The difficulties in using 
these techniques originate from the following observations:  

 Some of these techniques are imperative techniques 
meaning that the programmer is obliged to write a 
considerable amount of program code to realize the 
integration. Techniques such as adaptors, proxies, 
scripting languages, glue-code, dedicated libraries, 
etc. fall into this category.  

 Some of the techniques are applicable only at 
system-level and mostly require dedicated 
system/vendor specific solutions. Techniques such 
as  IDL’s and stub-generators, virtual machines, 
web-services, service-oriented architectures, etc. fall 
into this category. Since systems evolve 
continuously, the borders of integration cannot be 
fixed; programming-language level integration may 
turn out to be a system-level integration, or vice 
versa etc. System/vendor specific integration may 
also be a limiting factor in the evolution of systems. 

Challenge 5 is to uniformly integrate sub-systems and 
programming-language modules with the following 
characteristics: 

 Uniform integration is required both at system-level 
and programming-language level; 

 Uniform integration is required at and between 
sensor network, architecture and business platform 
layers;  

 Integration must be independent of systems and 
programming languages used;  

 Both horizontal and vertical (meta-level) integration 
must be supported; 

 Integration must be specified declaratively; 
 Integration technique must respect encapsulation of 

systems and modules (integration through 
interfaces); 

 Rich-set of integration semantics must be offered 
such as condition-based and query-based integration 
(For example, systems are coupled if certain 
conditions are TRUE); 

 Integration must be realized within a single machine 
and/or across multiple machines;  

 Integration must be verifiable as much as possible 
(For example, checking if the invariants of the 
integration holds); 

 Both compilation-time and run-time integration 
must be supported (Declarative specifications of 
integrations are therefore necessary); 

 Realistic case studies must be carried out for 
integrating various systems. For example, various 
sensor network subsystems, cloud-based systems, 
systems for big-data storage and analytics, machine-
learning packages, systems used for business 
workflow scheduling, etc. can be used in a case 
study for integration. The effort spent for integration 
must be in average much less than the conventional 
techniques available. 

The related research question is how to design high-level 
integration models, methods, techniques and tools so that 
Challenge 5 can be fulfilled as specified. 

Challenge 6: Designing a smart infrastructure with a 
high degree of interoperability, configurability, 
adaptability and evolvability 

Flexible language models and architectural styles ease 
coping with changes both at compile time and run-time. If 
the underlying languages and architectural styles are too 
rigid, the design space of the alternatives of design and run-
time adaptations are too limited. Since smart-city systems are 
long-living systems, extending the life-time of the systems 
becomes then very difficult.  

The concepts of separation of concerns and composition 
of concerns are fundamental in designing languages with a 
high degree of flexibility. The motivation here is to reduce 
complexity of software by decomposing software into 
manageable parts. Explicit composition operators are defined 
to create flexible systems. In practice, the term flexibility 
may refer to various quality attributes.  

In this paper, we particularly focus on the following 
quality attributes: 

 Interoperability: It must be possible to interoperate 
different systems together so that systems of 
systems architectures for smart systems can be 
realized. 

 Configurability: It must be possible to configure the 
clusters of systems according to particular smart-
city requirements (See also Challenge 2). 

 Adaptability and evolvability: Systems must adapt 
to changing conditions and evolve with respect to 
changing requirements so that long-living smart-city 
systems can be designed. 

Since mid-80’s, object-oriented programming languages 
have started to dominate the practical usage of programming 
languages. In end-80’s and begin-90’s several researchers 
have claimed that objects, inheritance and message passing 
semantics as defined by object-oriented languages cannot 
express the separation of certain concerns adequately (Akşit 
& Bergmans, 1992). In particular, the concerns like 
synchronization, real-time, coordinated behavior, multiple 
interfaces, tracing and error handling are typical examples 
where object-oriented languages may fall in short.  

Among others, three kinds of proposals have been quite 
significant: (a) reflective programming (Smith, 1982); (b) 
design patterns as a documentation of object-oriented 
solutions to recurring problems (Gamma, Vlissides, Johnson, 
Helm, 1994); (c) a new set of language abstractions. We will 
now elaborate on the latter: proposals for new language 
abstractions.  

Aspect-oriented languages have been introduced to 
overcome limitations of object-oriented languages. Between 
1990 and 2010 many aspect-oriented language proposals 
have been defined (Filman, Elrad, Clarke & Akşit, 2005). 
Gradually, aspect-oriented language features have been 
integrated into standard languages. As such these new 



 

  

abstractions have become commodity of programming 
practices. Other notable examples are ambient-oriented 
programing, reactive programming, feature-oriented 
programming, context-oriented programming and ontology-
driven programming (Dedecker & et al., 2006)  
(Bainomugisha & et al., 2012) (Apel & Kästner, 2009) 
(Appeltauer & et al., 2010) (Pan & et al., (2012).  

It is also possible that some states of a program may 
“emerge” through the interactions of software modules. 
These states belong to so-called “emergent behavior”, which 
is defined as the appearance of complex behavior out of 
multiplicity of relatively simple interactions (Malakuti & 
Akşit, 2015) (Malakuti & Akşit, 2014). In general, emergent 
modules are created dynamically, when their creation 
conditions become TRUE. This requires, however, the 
specification of emergent conditions explicitly. The 
challenge is whether such conditions can be inferred and /or 
learned and accordingly appropriate modules are generated 
through the use of automatic machine learning and synthesis 
techniques during program execution. 

Despite all these developments, providing language 
mechanisms and architectural styles that fulfil the flexibility 
needs of smart-city applications has not been accomplished 
yet (Sugihara & Gupta, 2008). Moreover, it is not practical to 
introduce a new language when so many languages are 
available for use. New language proposals, therefore, must 
extend the existing languages instead of offering a 
completely new language semantics and syntax. 

Challenge 6 is to design and implement an extension 
mechanism to existing languages and/or systems so that 
infrastructures can be designed for smart cities with a high 
degree of interoperability, configurability, adaptability and 
evolvability, with the following characteristics: 

 The extension mechanism must be usable with 
different languages and system implementations. 
From this perspective, this mechanism must be 
unified by the generic integration mechanism as 
demanded by Requirement 5; 

 Explicit models must be defined for the quality 
attributes interoperability, configurability, 
adaptability and evolvability and the proposed 
extension mechanisms must be justified 
accordingly; 

 Declarative extension mechanisms must be adopted 
instead of imperative ones (A similar condition was 
defined for Requirement 5); 

 The extension mechanism must support various 
interaction modalities among modules and systems 
such as call-based, event-based, etc. 

 The extension mechanism must be able to deal with 
emergent behavior, where necessary. 

 Define various realistic change-case scenarios to 
test each quality attribute (interoperability, 
configurability, adaptability and evolvability) 
individually and together. Define typical scenarios 
where emergent behavior appears and disappears. 
Test the flexibility of the system to cope with 

emergent behavior. Justify that the extension 
mechanism works with various popular languages 
and systems. 

The related research question is how to design extension 
mechanisms and architectural styles for enhancing 
interoperability, configurability, adaptability and evolvability 
of smart system applications and infrastructures. 

CONCLUSIONS 

This paper has first emphasized the importance of smart-
city systems and then described the role of infrastructures in 
cost-effective realization of smart-city systems. Along this 
line, 6 categories of challenges are identified as possible 
obstacles. For each obstacle, a possible research approach is 
suggested. To the best of our knowledge, this is the first 
paper that presents these obstacles as a whole in realizing 
smart city systems. To address these challenges, currently we 
are in the process of establishing a research center at the 
premises of the TOBB-ET University in Ankara. 
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