
 SDPS-2019
 Printed in Taichung, Taiwan, July, 2019
 2019 Society for Design and Process Science

SOFTWARE ENGINEERING CHALLENGES IN REALIZING SMART-CITY
SYSTEMS

Mehmet Aksit
FMT, University of Twente, Enschede and TOBB-ET University, Ankara

{m.aksit@utwente.nl}

ABSTRACT

More and more cities adopt the concept of smart cities to
manage their processes and to satisfy increasingly
sophisticated demands of their citizens. Unfortunately, due to
the complexity and lack of effective support by current
infrastructures, developing smart-city systems is a very
tedious task. This paper identifies 6 categories of challenges
as possible obstacles in the cost-effective realization of
smart-city systems. For each obstacle, a possible research
approach is suggested. In relation to the realization of smart-
city systems, to the best of our knowledge, this is the first
paper that presents these obstacles in a single publication.

INTRODUCTION

More and more cities adopt the concept of smart cities to
manage their processes and to satisfy increasingly
sophisticated demands of their citizens. Unfortunately, due to
the complexity and lack of effective support by current
infrastructures, developing smart-city systems is a very
tedious task. Within this context, this paper discusses the
software engineering challenges in realizing smart-city
systems.

 The concept of smart cities follows the evolutionary
steps of automation (Ellis & Nutt, 1980). It aims at
enhancing efficiency and effectiveness; It is first based on
replacement of the current state by (new) ICT techniques and
then causes a transformation to something different with
respect to the past; It is a disruptive development. What is
“smart” is a moving target and can only be defined relatively.

We classify smart-city systems as applications and
infrastructures. Our focus is on infrastructures.
Infrastructures support the development of applications and
as such they play a crucial role in the development of
applications. To increase the effectiveness and efficiency in
realizing smart-city systems, as a part of the infrastructure,
effective software engineering models, methods, techniques
and tools must be provided so that software engineers (smart-
city developers) are conveniently supported in their
application development activities. The challenges that are
discussed in this paper are due to the lack of effective
support by the current infrastructures.

Infrastructure design refers to many different areas from
sensor networks to business platforms. Much work has been
carried out in this context and many useful sub-systems are
already available for use. A smart-city infrastructure,
therefore, must be designed as an enabler, integrator and

harvester of the available technologies individually and
together and must fill the gaps where it is needed.

We identify 6 categories of software engineering
challenges in realizing smart-city systems. These are, (1)
developing the necessary models for smart-city systems; (2)
managing and optimizing clusters of systems; (3) designing
models, methods and tools for critical infrastructures; (4)
optimizing the necessary quality attributes by system
adaptation at run-time; (5) integrating software; and (6)
designing a smart infrastructure with a high degree of
interoperability, configurability, adaptability and
evolvability.

We discuss these challenges in some detail in the
following sections. The purpose of this paper is to make the
software engineers be conscious about the problems that they
may face while developing smart-city systems and to inspire
researchers in their research activities. For each identified
challenge, we also present a research approach to address the
challenge in systematical manner.

This paper is organized as follows. The next section
gives definitions and emphasizes the importance of effective
infrastructures in developing smart-city applications. The
remaining sections present the challenges and propose
research approaches to address these. Finally, the last section
concludes the paper.

SMART CITIES

Recently, the concept of smart cities has attracted a lot
of attention. A smart city is generally defined as “an urban
area that uses different types of electronic data collection
sensors to supply information which is used to manage assets
and resources efficiently” (Wiki-a, 2019). The term smart
cities, however, may refer to different definitions depending
on the stakeholders involved (Gil-Garcia, Pardo & Nam,
2015). For example, viewpoints of stakeholders over smart
cities who are in charge of managing public services, city
administration, governance, ecological sustainability, ICT
systems may differ from each other considerably. In addition,
residents have also a strong interest in the services offered by
a smart city.

There has been a considerable number of research and
development activities in the world to create smart cities
(Panos & Pardalos, 2017) (Bibri, 2018). Many cities around
the globe claimed the status of a smart city (Sanseverino,
Sanseverino & Vaccaro, 2018) (Smart Cities Council, 2019)
(EU report, 2007). The topic of smart cities is also
considered as a very strategic topic by many governments.

This paper particularly focuses on the generic
infrastructure, which is broadly defined as a set of generic
information technology (IT) components that are the
foundation of IT services for smart cities. Here the term
generic refers to reusable components that can be utilized by
diverse applications. The infrastructure is divided into three
layers:

1. Sensor network layer: It involves the design
and deployment of sensors, communication
protocols, data gathering and transmission, data
interpretation, etc.

2. Architecture layer: It utilizes the services
offered by the sensor network layer and
implements the core software system
architectures so that business platform layer
applications can be developed.

3. Business platform layer: It utilizes the services
offered by the other layers and provides end-
user and/or business solutions to the smart-city
requirements.

The functionalities of these layers are not fixed and
evolve continuously with the advancements in technology
and changing user demands.

Smart-city applications can be very diverse. Companies
may offer different kinds of smart-city applications for a very
diverse range of needs. Agility is an important feature for
companies to develop smart-city applications (just) in time
according to the changing end-user demands and market
expectations. Infrastructures must support a large category of
smart-city applications and be flexible enough to
conveniently introduce new techniques when they are
demanded.

The design of a generic infrastructure refers to a large
category of publications in many different areas. These are
for example, sensors and sensor networks (Ferrari, 2010), big
data (Mohanty & et al., 2015) and machine learning
(Goodfellow & et al., 2016), self-adaptive systems (Kounev
& et al., 2017), service-oriented architectures (Dhara,
Dharmala & Sharma, (2015), systems of systems (DoD,
2008), cloud computing (Marinescu, 2017), cyber-physical
systems (Suh & et al., 2014), cyber-security (Lehto &
Neittaanmäki, 2015), critical infrastructures (Gritzalis,
Theocharodou & Stergiopoulus, 2019), reliable systems
(Birolini, 2017), dependable systems (de Lemos, Gacek &
Romanovsky, 2003), business platforms such as decision
support systems, business process modeling (Shishkov,
2018), and a large set of software engineering literature on
programing languages, software architectures, model-driven
architectures, testing, verification etc. (Sommerville, 2016)
(van der Linden & et al., 2007)(Da Silva, 2015)(Nielsen,
2014). Many useful systems with different capabilities are
already available for use. The infrastructure therefore, must
be designed as an enabler, integrator and harvester of the
available technologies individually and together and must fill
the gaps where it is needed.

Economical, sustainable and robust software systems
which fulfil functional and qualitative requirements are

essential for all software systems (Akşit, 2018). Achieving
these generic objectives are considered as the main objective
of the Software Engineering discipline (Sommerville, 2016).
To fulfill the requirements of smart-city applications now
and in the future, software engineering models, methods,
techniques and tools are crucial. No matter how intelligent a
software solution is, if it cannot be realized with the desired
quality attributes, one cannot expect an economical value out
of it (Akşit, 2018). The software engineering challenges
presented in this paper, therefore, form an important obstacle
in cost-effective realization of smart-city applications.

In addition to offering diverse platform services,
infrastructures must also provide effective software
engineering methods and techniques so that software
engineers (smart-city developers) are conveniently supported
in their application development activities.

LIMITATIONS OF THE STATE-OF-THE-ART
TECHNIQUES AND APPROACHES TO ADDRESS
THESE

Unfortunately, due to the complexity of the systems, the
necessity of coordinating, integrating and optimizing
different systems together, dealing with different levels of
abstractions from sensor networks to business platform
layers, etc., developing smart-city applications is generally a
very tedious and time consuming task. Currently a
considerable number of research activities is being carried
out within this context (Bibri, 2018). Along this line, after
carrying out an extensive study on the related literature on
infrastructures and interviewing the relevant persons, we
have identified 6 general categories of challenges:

Challenge 1: Developing models for smart cities

Many software companies specialize in certain
application areas. In such cases, it is claimed that deriving
software architecture and systems from the relevant domain
models can be very productive (Akşit, 2018) (Da Silva,
2015). The benefits of using models can be:

 Models can provide a high-level representation of
the topic of interest and hide unnecessary details of
software so that complexity can be managed;

 Models can enhance reusability and extensibility
through model reuse and model transformations;

 Models can help in enforcing correctness through
model-based verification techniques and testing;
and

 Models can ease programming by generating code
from models.

Challenges in applying models can be:
 Reducing the effort that is spent in defining

models;
 Determining the abstractness and details of

models;
 Checking consistency among models;
 Assuring the invariant properties of models;
 Generating efficient code from models.

Model-Driven Engineering (MDE) is a well-known
approach which is based on models, meta-models (and meta-
meta models, etc.) and model transformations (Brambilla,
Cabot & Wimmer, 2012). During the last decade, there has
been an increasing emphasis on MDE and as such many
useful models are readily available for use.

Unfortunately, within the context of smart cities many
useful models are still missing. We think that lack of models
in designing smart-city applications is one of the causes of
excessive programming effort needed in realizing smart-city
applications.

Recently, a considerable amount of research has been
carried out in data science, machine learning and decision
support systems due to the availability of large amount of
data and new data analysis and machine learning techniques
(Pyne & et al., 2016) (Kramer, 2016). These techniques can
be useful in obtaining realistic models by learning/inferring
the (parts-of) models and/or their parameters.

We think that to design and implement the necessary
models, meta models and model transformations the
following research approach can be followed:

 Elaborate on smart-city applications and within the
context of MDE, develop models required by most
smart-city applications. In particular:
- Develop models for the sensor networks layer.

The models should represent sensor networks,
topologies, data adaptation and interpretation
modules, characteristics of sensors, etc.;

- Develop models for the architectural layer.
Models should represent various architectural
styles that are required for smart-city
applications. Important category of models are
used for dependability purposes (See Challenge
3);

- Develop models for the business platform
layer: Models should represent various needs of
businesses, such as work-flow modeling,
scheduling and optimization;

 Develop models for the integrator language and
technique (see Challenge 5) which is to be designed
in the implementation of this proposal. This is
important to integrate models with each other where
necessary;

 Check consistency among the models automatically;
 Verify the invariants of models in the model

instantiation phase, where possible;
 Adopt model query and pruning mechanisms to

manage the complexity of the model base;
 Generate efficient code where applicable;
 Develop data gathering, analysis and machine

learning techniques to learn/infer the (parts-of)
models and/or their parameters.

 Define various realistic use-case scenarios which
utilize the models defined at various abstraction
levels, from the sensor network layer to the
architecture and business platform layers and justify
the effectiveness of the models defined.

Accordingly demonstrate the advantages of the
model-based approach with respect to the
straightforward programming practices without
using models.

The related research question is how to design high-level
smart-city models, techniques and tools so that the these
requirements can be fulfilled effectively.

Challenge 2: Designing a framework for managing and
optimizing the configurations of clusters

Smart-city systems typically consists of clusters of
systems (Obaidat & Nicopolitidis, 2016). Each system
cluster is assumed to be a (potentially) software-intensive,
operationally and managerially independent computer system
interoperating with other systems to achieve the common
business goals. Clusters may be formed at sensor network,
architecture and business platform layers. Interoperation may
occur within and between layers. Each cluster may also
incorporate various computational elements such as sensors,
translators, adaptors, etc. As such, we assume that distributed
computing is a natural property of clusters. Both the elements
of a cluster and the clusters of clusters may be required to be
configured according to the needs.

To create generic infrastructures, the infrastructure must
provide means to integrate/operate a variant set of
applications. Optimizing configuration requires modeling the
common and variable aspects of the clusters (Coplien,
Hoffman & Weiss, 1998). Since smart cities have to cope
with a various set of requirements, the design of
configuration that satisfies the management and quality
requirements is not trivial.

We think that managing and configuring the elements of
clusters should not be restricted to procedural measures only
(such as initializing, linking, etc.) but the overall quality of
configurations must be considered as well. Unfortunately, to
the best of our knowledge, for system structuring, generic
MDE frameworks have not been developed so far to manage
and optimize the elements of clusters or clusters of clusters
according to the user-defined quality optimization criteria.
To address this challenge, the following approach is
proposed:

 Define models for clusters at sensor network,
architecture, and business platform layers. Models
must explicitly represent the common and variable
aspects of the clusters.

 Define the necessary (quality-based) management
operations for the clusters;

 Define models for various quality attributes
(timeliness, energy, processing power, precision
etc.) together with the necessary optimization
criteria for configuring clusters optimally;

 Design and implement various optimization
techniques with different strategies;

 Adopt different adaptor/generator mechanisms to
restructure the clusters according to the computed
optimal configuration scheme at compile time
and/or at run-time.

 Develop data gathering, analysis and machine
learning techniques to learn/infer the (parts-of)
models and/or their parameters;

 Define various realistic management and
configuration scenarios for the elements of clusters
and for the clusters of clusters and apply the
designed techniques accordingly. Measure the
efficiency and effectiveness of the desired
techniques with respect to manual and/or non-MDE
approaches. Verify that the configurations are
optimal with respect to the desired quality attributes
and optimization criteria.

The related research question is how to design a generic
MDE framework so that managing and optimizing the
configuration of the elements of clusters and/or the clusters
of clusters can be realized

 Challenge 3: Designing models, methods and tools for
critical infrastructures

Critical infrastructure for smart cities can be defined as
“an asset or system which is essential for the maintenance of
vital societal functions within a city. The damage to a critical
infrastructure, its destruction or disruption by natural
disasters, terrorism, criminal activity or malicious behavior,
may have a significant negative impact for the security of the
inhabitants of the city” (EU, 2019). It should be noted that
this term is typically used at the scope of a nation, but
similarly it applies also to smart cities which will heavily rely
on the cyber part (software) that controls the city.

Since in this paper we aim at software intensive
solutions to the identified smart-city problems, we will
further exclude measures other than the software measures.
Within this context, we claim that specially designed
software systems can effectively support designing critical
infrastructures by providing architectures with a high degree
of reliability, availability, security, timeliness and
correctness. Dependability is the ability of a system to
deliver service that can justifiably be trusted (Sözer, 2009).
This definition encompasses several quality attributes
including reliability, availability, etc. Reliability is defined as
continuity of correct service, whereas availability is readiness
for correct service. Computer security or cybersecurity is
defined as “the protection of computer systems from theft or
damage to their hardware, software or electronic data, as well
as from disruption or misdirection of the services they
provide” (Wiki-b, 2019). Timeliness is defined as the ability
of a computer/software system to complete its processing
within the specified time constraints. Correctness is defined
as the fulfillment of the functional (and qualitative)
requirements of the system.

A critical infrastructure may demand all these quality
attributes together and as such designing an effective critical
infrastructure can be a very challenging task. Dependability
can be provided by (1) prevention, for example by applying
the right design methods, (2) removal of the faults, for
example by verification and testing, and (3) by tolerance, for

example by adopting fault-tolerance architectures. All these 3
approaches can be meaningful in a certain context.

We claim that domain-specific architectural styles and
the associated techniques can help in designing critical
infrastructures considerably. However, this may require the
definition of domain-specific architectural styles for each
quality attribute and integration of these styles together
within the overall architecture by leveraging the intended
quality attributes of each style.

In the literature, various algorithmic techniques and
search-based methods (Harman & et al., 2012) have been
introduced to compute the “optimal” architectural
decomposition with respect to certain quality attributes.
Although there has been a number of domain-specific
architectural style proposals (Sözer, Tekinerdogan & Akşit,
2013), for example to provide a high degree of availability,
composition of different architectural styles for various
dependability purposes has not been studied in detail.
Furthermore, to the best of our knowledge, there are no MDE
framework proposals to design and integrate various
architectural styles together for the purpose of supporting
critical infrastructures and to compute the optimal trade-off
among these styles based on user-defined criteria.

To address this challenge, it is considered necessary to
design and implement various architectural styles for the
purpose of critical infrastructures within the context of an
MDE framework. The following approach is proposed for
this purpose:

 Adopt an MDE approach to define architectural
styles for: reliability and availability, security and
timeliness;

 Within the MDE framework, define quality models
for reliability/availability, security and timeliness;

 Define trade-off relationships among the quality
attributes;

 Define models for multi-objective optimization
criteria;

 Design and implement multi-objective optimization
techniques with different strategies;

 Integrate (risk) analysis tools for the adopted quality
attributes for example based on model-checking;

 Develop data gathering, analysis and machine
learning techniques to learn/infer the (parts-of)
models and/or their parameters;

 Define various realistic attack and failure scenarios
and test the designed architectural styles
individually and together. Verify the robustness of
the styles according to the desired quality attributes.
Check if the trade-off conditions are fulfilled at run-
time. For the risk analysis, it is also possible to
adapt other verification tools, for example by means
of run-time verification. These techniques will be
discussed under Challenge 4.

The related research question is, within an MDE
framework, how to define a set of architectural styles for
assuring certain quality attributes for critical infrastructures

and how to compute and optimize the necessary trade-offs
among these qualities.

Challenge 4: Optimizing the necessary quality attributes
through system adaptation at run-time

Smart-city systems are long-living systems. When a
system is deployed, it must be adapted, modified, extended
and (partially) replaced while it is operational. Challenge 4
deals with the automatic adaptation of smart-city
infrastructures at run-time.

There has been a large number of proposals to verify
systems at run-time (Malakuti, 2011). Most of these systems
adopt various specification languages and generate run-time
monitors and verification modules according to the
specifications defined. Although a considerable number of
systems are now available for use, there has been only a few
number of proposals to verify systems across multiple
languages in distributed system settings (Malakuti, Akşit &
Bockisch, 2011). As such most existing run-time verification
systems are less suitable for verifying systems of systems.

A number of approaches has been presented for
designing and implementing so-called quality aware
architectures, for various purposes, for example for reducing
energy consumption (Malakuti, Lohmann & Akşit, 2015).
Self-adaptive or self* systems have been defined in the
literature to create systems with dynamic adaptation (Kounev
& et al., 2017). Most of these systems are inspired from the
adaptive control theory (Kuo, 1995) and as such they adopt
one or more control loops for adaptation. Recently, within
the context of MDE approaches, a number of research
proposals has been presented to design adaptive systems. So-
called models@run-time systems adopt various feedback
control mechanism to improve the system performance
according to the predefined control parameters (Bennaceur &
et al., 2014). However, there is hardly any MDE framework
available which allows user-defined quality models, monitors
the systems accordingly at run-time to check if the desired
quality attributes are satisfied, and optimizes the system
structure using self-adaptation mechanisms.

Data analytics, machine learning and decision support
systems can be particularly useful in steering the control
process of the adaptation of systems.

Challenge 4 is to design and implement various models
for the purpose of defining run-time verification and self-
adaptation systems within a context of an MDE framework.
To this aim, the following approach is proposed:

 Define models of specification languages to express
the desired properties of systems at run-time, for
example, based on functions, data and/or time.
Extend these properties according to the desired
quality attributes if necessary (in alignment with
Challenge 3);

 Define generative techniques for run-time monitors
and verification automata;

 Minimize the overhead of run-time monitoring,
where possible;

 Extend the run-time verification techniques over
multiple languages and systems, for example by
incorporating the run-time verification techniques in
the integrating language, which is discussed by
Challenge 5.

 Define models for architectural styles for self-
adaptive systems based on feedback-control
principles;

 Integrate self-adaptive architectural styles with the
run-time verification techniques;

 Define means to gather the relevant data, and
develop data analysis techniques. Accordingly,
define machine learning/deep learning techniques as
a meta-control mechanism of self-adaptive systems;

 Investigate multi-objective optimization techniques
as control strategies;

 Define an experimental setting where the designed
systems can be tested with various contextual
parameters. Adopt statistical generators to adjust the
contextual parameters at run-time. While varying
the contextual parameters using realistic scenarios,
monitor the systems behavior and its adaptation
capabilities. Justify accordingly the designed
systems if they satisfy the desired run-time
requirements.

The related research question is how to design
architectural styles for run-time verification and self-
adaptation so that systems can preserve their run-time
qualities as desired.

Challenge 5: Integrating software systems

Integrating software systems can be practically realized
at system level or at programming-language level. “System
integration is defined as the process of bringing together the
component sub-systems into one system and ensuring that
the subsystems function together as a system” (Wiki-c,
2019). There are various integration possibilities such as
horizontal and vertical integration, which roughly correspond
to communication-channel based integration or layered-
architecture based integration, respectively. Programming-
language level integration is realized at a much finer level of
language modules. A typical smart-city application may
require integration of many sub-systems and corresponding
programming-language modules for the purpose of for
example, data sensing, gathering and reasoning, run-time
configuration and tuning, storing data on cloud systems,
analyzing data, adopting machine learning techniques,
utilizing decision support systems, business processes and
work-flow schedulers, etc.

Many of the functionally specialized sub-systems and
language modules/libraries may be developed independently.
Integration is generally carried out using techniques like,
IDL’s and stub-generators, adaptors, proxies, scripting
languages, glue-code, brokers, virtual machines, dedicated
libraries, internet protocols, web-services, service-oriented
architectures, etc. Although these techniques help
considerably, they may still require a considerable

programming effort and in-depth knowledge about the
systems/modules being integrated. The difficulties in using
these techniques originate from the following observations:

 Some of these techniques are imperative techniques
meaning that the programmer is obliged to write a
considerable amount of program code to realize the
integration. Techniques such as adaptors, proxies,
scripting languages, glue-code, dedicated libraries,
etc. fall into this category.

 Some of the techniques are applicable only at
system-level and mostly require dedicated
system/vendor specific solutions. Techniques such
as IDL’s and stub-generators, virtual machines,
web-services, service-oriented architectures, etc. fall
into this category. Since systems evolve
continuously, the borders of integration cannot be
fixed; programming-language level integration may
turn out to be a system-level integration, or vice
versa etc. System/vendor specific integration may
also be a limiting factor in the evolution of systems.

Challenge 5 is to uniformly integrate sub-systems and
programming-language modules with the following
characteristics:

 Uniform integration is required both at system-level
and programming-language level;

 Uniform integration is required at and between
sensor network, architecture and business platform
layers;

 Integration must be independent of systems and
programming languages used;

 Both horizontal and vertical (meta-level) integration
must be supported;

 Integration must be specified declaratively;
 Integration technique must respect encapsulation of

systems and modules (integration through
interfaces);

 Rich-set of integration semantics must be offered
such as condition-based and query-based integration
(For example, systems are coupled if certain
conditions are TRUE);

 Integration must be realized within a single machine
and/or across multiple machines;

 Integration must be verifiable as much as possible
(For example, checking if the invariants of the
integration holds);

 Both compilation-time and run-time integration
must be supported (Declarative specifications of
integrations are therefore necessary);

 Realistic case studies must be carried out for
integrating various systems. For example, various
sensor network subsystems, cloud-based systems,
systems for big-data storage and analytics, machine-
learning packages, systems used for business
workflow scheduling, etc. can be used in a case
study for integration. The effort spent for integration
must be in average much less than the conventional
techniques available.

The related research question is how to design high-level
integration models, methods, techniques and tools so that
Challenge 5 can be fulfilled as specified.

Challenge 6: Designing a smart infrastructure with a
high degree of interoperability, configurability,
adaptability and evolvability

Flexible language models and architectural styles ease
coping with changes both at compile time and run-time. If
the underlying languages and architectural styles are too
rigid, the design space of the alternatives of design and run-
time adaptations are too limited. Since smart-city systems are
long-living systems, extending the life-time of the systems
becomes then very difficult.

The concepts of separation of concerns and composition
of concerns are fundamental in designing languages with a
high degree of flexibility. The motivation here is to reduce
complexity of software by decomposing software into
manageable parts. Explicit composition operators are defined
to create flexible systems. In practice, the term flexibility
may refer to various quality attributes.

In this paper, we particularly focus on the following
quality attributes:

 Interoperability: It must be possible to interoperate
different systems together so that systems of
systems architectures for smart systems can be
realized.

 Configurability: It must be possible to configure the
clusters of systems according to particular smart-
city requirements (See also Challenge 2).

 Adaptability and evolvability: Systems must adapt
to changing conditions and evolve with respect to
changing requirements so that long-living smart-city
systems can be designed.

Since mid-80’s, object-oriented programming languages
have started to dominate the practical usage of programming
languages. In end-80’s and begin-90’s several researchers
have claimed that objects, inheritance and message passing
semantics as defined by object-oriented languages cannot
express the separation of certain concerns adequately (Akşit
& Bergmans, 1992). In particular, the concerns like
synchronization, real-time, coordinated behavior, multiple
interfaces, tracing and error handling are typical examples
where object-oriented languages may fall in short.

Among others, three kinds of proposals have been quite
significant: (a) reflective programming (Smith, 1982); (b)
design patterns as a documentation of object-oriented
solutions to recurring problems (Gamma, Vlissides, Johnson,
Helm, 1994); (c) a new set of language abstractions. We will
now elaborate on the latter: proposals for new language
abstractions.

Aspect-oriented languages have been introduced to
overcome limitations of object-oriented languages. Between
1990 and 2010 many aspect-oriented language proposals
have been defined (Filman, Elrad, Clarke & Akşit, 2005).
Gradually, aspect-oriented language features have been
integrated into standard languages. As such these new

abstractions have become commodity of programming
practices. Other notable examples are ambient-oriented
programing, reactive programming, feature-oriented
programming, context-oriented programming and ontology-
driven programming (Dedecker & et al., 2006)
(Bainomugisha & et al., 2012) (Apel & Kästner, 2009)
(Appeltauer & et al., 2010) (Pan & et al., (2012).

It is also possible that some states of a program may
“emerge” through the interactions of software modules.
These states belong to so-called “emergent behavior”, which
is defined as the appearance of complex behavior out of
multiplicity of relatively simple interactions (Malakuti &
Akşit, 2015) (Malakuti & Akşit, 2014). In general, emergent
modules are created dynamically, when their creation
conditions become TRUE. This requires, however, the
specification of emergent conditions explicitly. The
challenge is whether such conditions can be inferred and /or
learned and accordingly appropriate modules are generated
through the use of automatic machine learning and synthesis
techniques during program execution.

Despite all these developments, providing language
mechanisms and architectural styles that fulfil the flexibility
needs of smart-city applications has not been accomplished
yet (Sugihara & Gupta, 2008). Moreover, it is not practical to
introduce a new language when so many languages are
available for use. New language proposals, therefore, must
extend the existing languages instead of offering a
completely new language semantics and syntax.

Challenge 6 is to design and implement an extension
mechanism to existing languages and/or systems so that
infrastructures can be designed for smart cities with a high
degree of interoperability, configurability, adaptability and
evolvability, with the following characteristics:

 The extension mechanism must be usable with
different languages and system implementations.
From this perspective, this mechanism must be
unified by the generic integration mechanism as
demanded by Requirement 5;

 Explicit models must be defined for the quality
attributes interoperability, configurability,
adaptability and evolvability and the proposed
extension mechanisms must be justified
accordingly;

 Declarative extension mechanisms must be adopted
instead of imperative ones (A similar condition was
defined for Requirement 5);

 The extension mechanism must support various
interaction modalities among modules and systems
such as call-based, event-based, etc.

 The extension mechanism must be able to deal with
emergent behavior, where necessary.

 Define various realistic change-case scenarios to
test each quality attribute (interoperability,
configurability, adaptability and evolvability)
individually and together. Define typical scenarios
where emergent behavior appears and disappears.
Test the flexibility of the system to cope with

emergent behavior. Justify that the extension
mechanism works with various popular languages
and systems.

The related research question is how to design extension
mechanisms and architectural styles for enhancing
interoperability, configurability, adaptability and evolvability
of smart system applications and infrastructures.

CONCLUSIONS

This paper has first emphasized the importance of smart-
city systems and then described the role of infrastructures in
cost-effective realization of smart-city systems. Along this
line, 6 categories of challenges are identified as possible
obstacles. For each obstacle, a possible research approach is
suggested. To the best of our knowledge, this is the first
paper that presents these obstacles as a whole in realizing
smart city systems. To address these challenges, currently we
are in the process of establishing a research center at the
premises of the TOBB-ET University in Ankara.

REFERENCES

Akşit, M. & Bergmans, L. (1992). Obstacles in Object-

Oriented Software Development, in OOPSLA’92
Proceedings, ACM SIGPLAN Notices, 27 (10). pp.
341-358.

Akşit, M. (2018). The Role of Computer Science and
Software Technology in Organizing Universities for
Industry 4.0 and Beyond, Proceedings of the
Federated Conference on Computer Science and
Information Systems pp. 5–11.

Apel, S. & Kästner, C. (2009). An Overview of Feature-
Oriented Software Development, Journal of Object
Technology, Volume 8 Issue 5 Pages 49-84.

Appeltauer, M. & et al. (2010). Event-Specific Software
Composition in Context-Oriented Programming,
Software Composition, pp. 50-65.

Bainomugisha, E. & et al. (2012). A Survey on Reactive
Programming, ACM Computing Surveys (CSUR).

Bennaceur A. & et al. (2014). Mechanisms for Leveraging
Models at Runtime in Self-adaptive Software. In:
Bencomo N., France R., Cheng B.H.C., Aßmann U.
(Eds), Models@run.time, Lecture Notes in
Computer Science, vol 8378. Springer, (2014).

Bibri, S. E. (2018). Smart Sustainable Cities of the Future
The Untapped Potential of Big Data Analytics and
Context-Aware Computing for Advancing
Sustainability, The Urban Book Series, Springer.

Birolini, A. (2017). Reliability Engineering Theory and
Practice, 8th Edition, Springer.

Brambilla, M., Cabot, J. & Wimmer, M. (2012). Model-
Driven Software Engineering in Practice, Morgan
& Claypool Publishers.

Coplien, J., Hoffman, D. & Weiss, D. (1998). Commonality
and Variability in Software Engineering, IEEE
Software, pp. IEEE Software 37 – 45.

Da Silva, A. R. (2015). Model-Driven Engineering: A Survey
Supported by the Unified Conceptual Model,
Elsevier Computer Languages, Systems and
Structures, 43, pp. 139-155.

de Lemos, R., Gacek, C. & Romanovsky, A. (Eds) (2003).
Architecting Dependable Systems State-of-the-art
Survey, LNCS 2677, Springer.

Dedecker, J. & et al. (2006). Ambient-Oriented
Programming in Ambienttalk, European
Conference on Object-Oriented Programming, pp.
230-254.

Dhara, K. M., Dharmala, M. & Sharma, C. K. (2015). A
Survey Paper on Service Oriented Architecture
Approach and Modern Web Services, All Capstone
Projects, http://opus.govst.edu/capstones/157.

DoD (2008). Systems Engineering Guide for Systems of
Systems, version 1.0.

Ellis C. A. & Nutt G. J. (1980). Office Information Systems
and Computer Science, ACM Comput. Surv. 12(1):
27-60.

EU report (2007). Smart cities Ranking of European
medium-sized cities, Final report.

EU report on Critical Infrastructure (2019). Adapted from
https://ec.europa.eu/home-affairs/what-we-
do/policies/crisis-and-terrorism/critical-
infrastructure_en

Ferrari, G. (Ed.) (2010). Sensor Networks Where Theory
Meets Practice, Springer.

Filman, R. E., Elrad, T., Clarke, S. & Akşit M. (2005).
Aspect-Oriented Software Development, Addison-
Wesley.

Gamma, E., Vlissides, J., Johnson, R. & Helm, R. (1994).
Design Patterns Elements of Reusable Object-
Oriented Software, Addison-Wesley.

Gil-Garcia, J. R., Pardo, T. A. & Nam, T. (2015). What
makes a city smart? Identifying core components
and proposing an integrative and comprehensive
conceptualization, Information Polity, 20 pp. 61–87.

Goodfellow & et al. (2016). Deep Learning, MIT Press.
Gritzalis, D., Theocharodou, M. & Stergiopoulus, G. (Eds)

(2019). Critical Infrastructure Security and
Resilience Theories Methods, Tools and
Technologies, Advanced Sciences and Technologies
for Security Applications, Springer.

Harman, M. & et al. (2012). Search-Based Software
Engineering: Trends, Techniques and Applications,
ACM Computing Surveys, vol. 45, Issue 1, Article
no. 11.

Kounev & et al. (2017). Self-Aware Computing Systems,
Springer.

Kramer, O. (2016). Machine Learning for Evolution
Strategies, Studies in Big Data 20, Springer.

Kuo, B. C. (1995). Automatic Control Systems, Prentice-Hall
Inc.

Lehto, M. & Neittaanmäki P. (Eds.) (2015). Cyber Security:
Analytics, Technology and Automation, Springer.

Malakuti, S. & Akşit, M. (2014). Emergent Gummy
Modules: Modular Representation of Emergent
Behavior, in Proc. of the 2014 International
Conference on Generative Programming: Concepts
and Experiences (GPCE), pp. 15-24.

Malakuti, S. & Akşit, M. (2015). On Liberating Programs
from the Von Neumann Architecture via Event-
based Modularization, in Companion Proc. of the
14th International Conference on Modularity, New
York: Association for Computing Machinery
(ACM), pp. 31-34.

Malakuti, S. (2011). Event Composition Model: Achieving
Naturalness in Run-Time Enforcement, Ph.D.
Thesis, University of Twente.

Malakuti, S., Akşit, M. & Bockisch, C. (2011). Runtime
Verification in Distributed Computing, Journal of
Convergence, 2 (1). pp. 1-10.

Malakuti, S., Lohmann, W. & Akşit, M. (Eds) (2015).
Introduction to Special Issue on Software
Engineering Aspects of Green Computing, In :
Sustainable computing. 7, pp. 1-11.

Marinescu, D. C. (2017). Cloud Computing: Theory and
Practice, Morgan Kaufmann.

Mohanty & et al. (2015), Big Data A Primer, Springer.
Nielsen, B. (2014). Towards a Method for Combined Model-

based Testing and Analysis, in Proc. of the 2nd
International Conference on Model-Driven
Engineering and Software Development, pp. 609-
618.

Obaidat, M. S. & Nicopolitidis, and P. (2016). Smart Cities
and Homes, Key Enabling Technologies, Elsevier.

Pan, J. Z. & et al. (2012). Ontology-Driven Software
Development, Springer Science & Business Media.

Panos, S. T. R. & Pardalos, M. (Eds) (2017). Smart-city
Networks Through the Internet of Things, Springer
Optimization and Its Applications 125.

Pyne, S. & et al. (Eds) (2016). Big Data Analytics Methods
and Applications, Springer.

Sanseverino, E. R., Sanseverino, R. R. & Vaccaro, V. (Eds)
(2018). Smart Cities Atlas Western and Eastern
Intelligent Communities, Springer Tracs in Civil
Engineering.

Shishkov, B. (Eds) (2018). Business Modelling and Software
Design, 8th. International Symposium BMSD 2018,
Vienna, Austria, July 2018 Proceedings, Springer
LNBIP 319.

Smart Cities Council, Smart City Examples (2019).
https://smartcitiescouncil.com/smart-cities-
information-center/smart-city-examples.

Smith, B. C. (1982). Procedural Reflection in Programming
Languages, Department of Electrical Engineering
and Computer Science, MIT, PhD dissertation.

Sommerville, I. (2016). Software Engineering, 10th Edition,
Pearson.

Sözer, H. (2009). Architecting Fault-tolerant Systems, Ph.D.
Thesis, University of Twente.

Sözer, H., Tekinerdogan, B. & Akşit, M. (2013). Optimizing
Decomposition of Software Architecture for Local
Recovery, Software Quality Journal, 21 (2), pp. 203-
240.

Suh, S. C. & et al. (2014) Applied Cyber-Physical Systems,
Springer.

Sugihara, R. & Gupta, R. K. (2008). Programming Models
for Sensor networks: A Survey, ACM Trans. Sens.
Netw. 4, 2, 29 pages.

van der Linden, F. & et al. (2007). Software Product Lines in
Action, Springer.

Wiki-a (2019). https://en.wikipedia.org/wiki/Smart_city Ref:
10, May, 2019

Wiki-b (2019). See for example https://en.wikipedia.
org/wiki/Computer_security

Wiki-c (2019). See for example https://en.wikipedia.org
/wiki/System_integration

